Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17.
نویسندگان
چکیده
Polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene are a major cause of pharmacokinetic variability in human. Although the poor metabolizer phenotype is known to be caused by two null alleles leading to absence of functional CYP2D6 protein, the large variability among individuals with functional alleles remains mostly unexplained. Thus, the goal of this study was to examine the intrinsic enzymatic differences that exist among the several active CYP2D6 allelic variants. The relative catalytic activities (enzyme kinetics) of three functionally active human CYP2D6 allelic variants, CYP2D6.1, CYP2D6.10, and CYP2D6.17, were systematically investigated for their ability to metabolize a structurally diverse set of clinically important CYP2D6-metabolized drugs [atomoxetine, bufuralol, codeine, debrisoquine, dextromethorphan, (S)-fluoxetine, nortriptyline, and tramadol] and the effects of various CYP2D6-inhibitors [cocaine, (S)-fluoxetine, (S)-norfluoxetine, imipramine, quinidine, and thioridazine] on these three variants. The most significant difference observed was a consistent but substrate-dependent decease in the catalytic efficiencies of cDNA-expressed CYP2D6.10 and CYP2D6.17 compared with CYP2D6.1, yielding 1.32 to 27.9 and 7.33 to 80.4% of the efficiency of CYP2D6.1, respectively. The most important finding from this study is that there are mixed effects on the functionally reduced allelic variants in enzyme-substrate affinity or enzyme-inhibitor affinity, which is lower, higher, or comparable to that for CYP2D6.1. Considering the rather high frequencies of CYP2D6*10 and CYP2D6*17 alleles for Asians and African Americans, respectively, these data provide further insight into ethnic differences in CYP2D6-mediated drug metabolism. However, as with all in vitro to in vivo extrapolations, caution should be applied to the clinical consequences.
منابع مشابه
Characterization of cytochrome P450 2D6.1 (CYP2D6.1), CYP2D6.2, and CYP2D6.17 activities toward model CYP2D6 substrates dextromethorphan, bufuralol, and debrisoquine.
Over 50 allelic variants of cytochrome P450 2D6 (CYP2D6) encoding fully functional, reduced-activity, or nonfunctional proteins have been described. Compared with Caucasians, studies in black populations demonstrate a tendency toward slower CYP2D6 activity, attributed in part to the presence of a variant allele associated with reduced activity, the CYP2D6*17 allele. To investigate the kinetic c...
متن کاملQuantitation of human cytochrome P450 2D6 protein with immunoblot and mass spectrometry analysis.
Accurate quantification of cytochrome P450 (P450) protein contents is essential for reliable assessment of drug safety, including the prediction of in vivo clearance from in vitro metabolism data, which may be hampered by the use of uncharacterized standards and existence of unknown allelic isozymes. Therefore, this study aimed to delineate the variability in absolute quantification of polymorp...
متن کاملRole of cytochrome P450 2D6 genetic polymorphism in carvedilol hydroxylation in vitro
Cytochrome P450 2D6 (CYP2D6) is a highly polymorphic enzyme that catalyzes the metabolism of a great number of therapeutic drugs. Up to now, >100 allelic variants of CYP2D6 have been reported. Recently, we identified 22 novel variants in the Chinese population in these variants. The purpose of this study was to examine the enzymatic activity of the variants toward the CYP2D6 substrate carvedilo...
متن کاملMolecular Dynamics Simulations to Investigate the Influences of Amino Acid Mutations on Protein Three-Dimensional Structures of Cytochrome P450 2D6.1, 2, 10, 14A, 51, and 62
Many natural mutants of the drug metabolizing enzyme cytochrome P450 (CYP) 2D6 have been reported. Because the enzymatic activities of many mutants are different from that of the wild type, the genetic polymorphism of CYP2D6 plays an important role in drug metabolism. In this study, the molecular dynamics simulations of the wild type and mutants of CYP2D6, CYP2D6.1, 2, 10, 14A, 51, and 62 were ...
متن کاملShort Communication Pinoline May be Used as a Probe for CYP2D6 Activity
Pinoline, 6-methoxy-1,2,3,4-tetrahydro-carboline, is a serotonin analog that selectively inhibits the activity of monoamine oxidase-A and shows antidepressant activity. Our previous study using a panel of recombinant cytochrome P450 (P450) enzymes suggests that pinoline O-demethylation may be selectively catalyzed by polymorphic CYP2D6. The current study, therefore, aimed to delineate the impac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 35 8 شماره
صفحات -
تاریخ انتشار 2007